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Abstract. Aspects of the formation and equilibration of a quark–gluon plasma are explored using a
quantum kinetic equation, which involves a non-Markovian, Abelian source term for quark and antiquark
production and, for the collision term, a relaxation time approximation that defines a time-dependent
quasi-equilibrium temperature and collective velocity. The strong Abelian field is determined via the
simultaneous solution of Maxwell’s equation. A particular feature of this approach is the appearance of
plasma oscillations in all thermodynamic observables. Their presence can lead to a sharp increase in the
time-integrated dilepton yield, although a rapid expansion of the plasma may eliminate this signal.

1 Introduction

The Relativistic Heavy-Ion Collider (RHIC) at Brook-
haven National Laboratory and the Large Hadron Collider
(LHC) at CERN are designed with the goal of produc-
ing an equilibrated phase of deconfined partonic matter:
the quark–gluon plasma (QGP). Lattice-QCD simulations
[1] and well-constrained phenomenological models [2] pre-
dict a second order phase transition at Tc � 150 MeV;
i.e., at energy densities � 1 GeV/fm3, in the equilibrium
two light-flavour theory. For more than two flavours the
characteristics of the transition are not as clear, but there
is a transition. A number of phenomena have been pro-
posed as signals for the existence of an equilibrated QGP
[3] but the nonequilibrium stages in the plasma’s devel-
opment are poorly understood and it is a contemporary
challenge to develop a description of the spacetime evolu-
tion of an ultra-relativistic heavy-ion collision (URHIC):
from particle production in the collision, through equili-
bration and plasma formation, and on to hadronisation.

Two methods are commonly used to describe the pro-
duction of partons in a collision: a perturbative pre-formed
parton picture [4] and a nonperturbative flux-tube based
picture [5]. They are complementary, and Monte Carlo
event generators [6–8] and hydrodynamical models [9]
have been developed to facilitate the analysis of data using
either production model.

Herein we focus on the pre-equilibrium particle pro-
duction stage in the evolution of a QGP and choose to
employ a flux-tube model. In this model the two collid-
ing nuclei are imagined to pass through one another and
stretch a high energy-density flux tube between them-

selves as they separate. This flux tube, which describes
the highly excited QCD vacuum, decays via a nonpertur-
bative particle–antiparticle production process analogous
to the Schwinger mechanism.

Particle production by the flux tube is described by a
source term and in quantum field theory that source term
is non-Markovian [10–15]; i.e., essentially nonlocal in time.
This feature can be important when the fields are strong.
(In the weak-field limit a time-local Schwinger-like source
term is recovered.) Such a situation is plausible at RHIC
and especially at LHC [2,15] where the anticipated initial
energy densities are, respectively, ε ∼ 10–100 GeV/fm3

and ε � 1 TeV/fm3.

Another feature that is characteristic of the flux-tube
production mechanism is the back-reaction phenomenon.
This phrase simply describes the fact that once the par-
ticles are produced they are accelerated and thereby gen-
erate a field that interferes with the collisional field that
produced them. Plasma oscillations are then almost in-
evitable [16], although they can rapidly be damped if the
thermalising collisions between particles are frequent [14,
15,17–23].

An observable that may preserve information about
non-Markovian effects and plasma oscillations in the pre-
equilibrium particle production stage of an URHIC is the
thermal dilepton spectrum, because leptons do not partic-
ipate in the strong interactions that equilibrate the QGP
[24]. To explore that possibility, we employ a quantum
Vlasov equation with a non-Markovian source term to cal-
culate the single particle distribution function that char-
acterises particle production by the flux tube, f(p, t), and
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use that to calculate the dilepton spectrum and its evolu-
tion from impact to equilibration.

Of course, equilibration can only be effected by dis-
sipative processes, such as collisions, and herein we de-
scribe those effects via a relaxation time approximation
(RTA). This is a coarse representation of the interactions
between the partons produced in the collision but, even
so, ensuring thermodynamic consistency is nontrivial. We
introduce and describe one practical scheme for achieving
that goal.

Our article is organised as follows. In Sect. 2 we present
the quantum kinetic equation and review properties of the
source term. The collision term is described in Sect. 3. This
completes the specification of the model and so our results
appear in Sect. 4. Section 5 presents some concluding re-
marks.

2 Distribution function

2.1 Kinetic equation and source term

We assume that in its wake an URHIC leaves a high
energy-density electric field, which occupies a large (in
fact, unbounded) spacetime volume. This excited domain
decays via a Schwinger-like mechanism, producing an un-
equilibrated plasma of highly energetic quarks and anti-
quarks. That system evolves and equilibrates, forming a
component of the QGP. Hadronisation only takes place
at a later stage, when the temperature and density of the
equilibrated system fall below some critical values, and
herein we do not consider that process.

We represent the excited domain by a spatially homo-
geneous, time-dependent Abelian vector potential, Aµ(t),
and work in the temporal gauge: A0 = 0. The spatial
part of the vector potential defines the ẑ-direction; i.e.,
A(t) = (0, 0, A(t)), and generates an electric field E(t) =
−dA(t)/dt. This provides the input for the quantum ki-
netic equations whose solution describes the evolution of
the single parton distribution functions that characterise
the produced partons:

d
dt
f±(p, t) = S±(p, t) + C±(p, t), (1)

where

d
dt

:=
∂

∂t
+ eE(t)

∂

∂p‖
, (2)

e is the electric charge and +/− denotes bosons/fermions;
f±(p, t) gives the ensemble fraction of particles with a
given momentum, p, at time t. The analogous equation for
antiparticles, which is obtained via charge conjugation and
must be solved simultaneously, yields f̄±(p, t), the single
antiparticle distribution function. The feedback generated
by the motion of the partons is incorporated by coupling
Maxwell’s equation to (1) and its analogue, as we discuss
in Sect. 2.2. That also introduces a coupling between the
equations for f , f̄ .

In (1), C±(p, t) is the collision term, which also couples
the equations for f and f̄ , and which we discuss in Sect. 3;
and S±(p, t) is the particle–antiparticle producing source
term:

S±(p, t) =
1
2
W±(p, t, t)

∫ t

t0

dt′W±(p, t, t′) (3)

× [1 ± 2f±(p, t′)] cos
[
2

∫ t

t′
dτω(p, t, τ)

]
.

The effect of quantum statistics on the particle produc-
tion rate is evident in the “±2f±” in (3) (neglecting this
term defines the low density limit) and in the different
transition (or tunnelling) amplitudes

W±(p, t, t′) = eE(t′)
p(t, t′)

ω2(p, t, t′)

(
ε⊥

p(t, t′)

)g±−1

, (4)

where g± = 2s± + 1, with s+ = 0, s− = 1/2, the three-
vector momentum p = (p⊥, p‖), the transverse mass-
squared ε2⊥ = m2 + p2

⊥, ω2(p, t, t′) = ε2⊥ + p2(t, t′) and

p(t, t′) = p‖ − e[A(t) −A(t′)] = p‖ + e

∫ t

t′
dτE(τ). (5)

(Equation (5), which describes the action of the field on
the particles, is just a re-expression of the Lorentz force
law: ∂p(t, t′)/∂t = eE(t).) The source term is nonlocal
in time and that can be important on short time-scales
in strong fields: if the fields are strong enough the time
duration of a tunnelling event and the time between suc-
cessive events, which is set by the particles’ Compton
wavelengths, are similar, and the processes interfere, with
observable consequences in the distribution function. In
addition, strong fields enhance the differences between
fermion and boson production. These features were high-
lighted in [10,13]. (For future reference we define the low
density limit of the source term as f±(p, t′) ≡ 0 on the
r.h.s. of (3) and the Markov approximation as the replace-
ment f±(p, t′) → f±(p, t): t′ → t here eliminates a nonlo-
cality in time.)

With our initial setup we have a simple, algebraic sym-
metry between the particle and antiparticle distribution
functions:

f̄(p, t) = f(−p, t), (6)

and hence it is only necessary to consider (1) explicitly. To
simplify this kinetic equation we follow [14] and introduce
two real auxiliary functions

u±(p, t) =
∫ t

t0

dt′W±(p, t, t′)[1 ± 2f±(p, t′)]

× sin
[
2

∫ t

t′
dτω(p, t, τ)

]
, (7)

v±(p, t) =
∫ t

t0

dt′W±(p, t, t′)[1 ± 2f±(p, t′)]

× cos
[
2

∫ t

t′
dτω(p, t, τ)

]
, (8)
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Fig. 1. Momentum dependence of the single parton distri-
bution function: f(p, t = 10 fm), obtained by solving (9)–(11)
and (13)–(16), with the impulse profile in (12) (A0 = 1GeV2,
1/b = 1GeV, and mb = 1/5; i.e., Set 4 in Table 1) and ne-
glecting collisions. “transverse momentum” represents |p⊥| and
“longitudinal momentum” represents p‖. The irregular struc-
ture makes it clear that this is not the distribution function of
a system in equilibrium.

such that for C±(p, t) = 0: u2
± + v2

± ∓ (1 ± 2f)2 = const.,
with the initial conditions f(t0) = v(t0) = u(t0) = 0. This
permits us to rewrite (1) as a system of coupled, first order
differential equations

d
dt
f± =

1
2
W±(p, t)v± + C±(p, t), (9)

d
dt
u± = 2ω(p)v± , (10)

d
dt
v± = W±(p, t)[1 ± 2f±] − 2ω(p)u±, (11)

where W±(p, t) and ω(p) denote, respectively, W±(p, t, t)
and ω(p, t, t). While this complex is qualitatively identical
to (1), it is simpler to treat numerically.

The kinetic equation describes pair creation for both
bosons and fermions. In the following we identify the
fermionic degrees of freedom with the quarks and anti-
quarks produced in an URHIC and restrict ourselves solely
to the fermionic case, henceforth suppressing the ± sub-
script.

2.2 Maxwell’s equation and internal currents

The kinetic equation depends nonlinearly on the time-
dependent electric field. The URHIC provides the impetus
for this field: it provides an external field, which we model
via

Eex(t) = −A0sech2(t/b). (12)

This profile “switches on” at t ∼ −2b and off at t ∼ 2b,
and attains its maximum magnitude of A0 at t = 0.

Table 1. Parameter sets used to specify our model of an
URHIC, (12). They yield equilibrium values of thermodynamic
quantities (three rightmost columns) that are consistent with
those expected in a QGP, with Sets 3, 4 approximating RHIC-
like conditions. We use mb = 1/5, a strong coupling: e = 1,
τc = 1, and consider 3 quark flavours, which explains the fac-
tor of Np = 18 = 2spin3flavour3colour that appears frequently.
(Using the low density limit to the source term or the Markov
approximation alters the calculated values of ε, T , n by ≤ 5%
for Set 1. However, these approximations introduce an error of
as much as 35% for Set. 4.)

A0 [GeV2] b [fm] ε [GeV/fm3] T [GeV] n [fm−3]

Set 1 0.25 0.2 1.0 0.20 1.4
Set 2 0.40 0.2 2.5 0.26 3.0
Set 3 0.75 0.2 12 0.38 10
Set 4 1.0 0.2 24 0.44 17

The external field, Eex, polarises the vacuum, generat-
ing a polarisation current that depends on the dielec-
tric properties of the medium, which are encoded in the
source term, and promotes the spontaneous production of
particle–antiparticle pairs, which it then accelerates, gen-
erating a conduction current that depends on the particle
distribution function. A consequence of the URHIC then
is the appearance of a two component internal current and
an attendant internal electric field:

−Ėin(t) = jin = jcond(t) + jpol(t), (13)

where the fully renormalised currents are [14]

jcond(t) = 2Npe

∫
d3p

(2π)3
p‖
ω(p)

f(p, t), (14)

jpol(t) = Npe

∫
d3p

(2π)3
ε⊥
ω(p)

[
v(p, t) − eĖ(t)ε⊥

4ω4(p)

]
,

(15)

with Np = 18, as described in Table 1.
In the absence of collisions, (9)–(11) and (13)–(15),

with

E(t) = Eex(t) + Ein(t), (16)

form a closed system of coupled equations whose solu-
tion provides the time-dependent electric field and single
parton distribution function. We can use this system to
illustrate some of the effects we have mentioned. In Fig. 1
we depict the momentum dependence of the distribution
function. The irregular structure is produced by interfer-
ence effects in the non-Markovian source term, which arise
because the tunnelling time is of the same magnitude as
the Compton wavelength of the produced particles, and by
the feedback mechanism. This structure is averaged out in
the ideal Markov limit [10] and makes it very clear that
this is not the distribution function of a system in equilib-
rium. Figure 2 depicts the time evolution of the calculated
distribution function and the feedback that characterises
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Fig. 2. Time evolution of the single parton distribution func-
tion: f(p⊥ = 0, p‖, t) in the low density limit. (Model parame-
ters are as in Fig. 1.) The regular (plasma) oscillation is driven
by the back-reaction phenomenon.

the behaviour of the internal currents is manifest in the ob-
vious, regular plasma oscillation. For comparison, in Fig. 3
we depict the distribution function obtained after the in-
clusion of dissipative effects, to be discussed in Sect. 3.

3 Equilibrating collisions

Once the particles are produced they are accelerated by
the electric field and, as we saw in Sect. 2.2, if eE ∼ ε2⊥,
then large amplitude, high frequency plasma oscillations
appear. This collective effect, which is a hallmark of the
flux-tube approach, may have observable consequences in
experiments aimed at producing an equilibrated QGP.
Whether that is the case or not can only be determined
once the effect of parton–parton collisions is incorporated.

The general nature of the dissipative collision term is
known: it too is non-Markovian and can produce particles
[25]. However, its complexity mitigates against its use in
semi-quantitative, exploratory studies and hence herein
we employ a simple RTA [14,15,18–23].

In this approach the detailed description of parton–
parton scattering is replaced by a continuous viscosity
term, which involves a time-dependent parameter that is
identified with the collision period. In addition we suppose
that the thermodynamic laws are valid at each time t,
and this assumption of local-equilibrium provides us with
an internally consistent definition and calculation of time-
dependent thermodynamic variables, such as temperature
and energy density. Of course, accepting a physical inter-
pretation of these quantities only makes sense once the
violent effects of the URHIC have subsided and the quan-
tities are evolving slowly with t.

The collision term in the kinetic equation for f(p, t)
must describe particle–particle (pp) and particle–antipar-
ticle (pa) collisions and reflect the symmetries of our initial
conditions. Hence we employ
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Fig. 3. f(p, t = 10 fm) obtained with the inclusion of parton–
parton collisions, as described in Sect. 3. Collisions promote
equilibration of the system, which is evident in the now smooth
distribution function; cf. Fig. 1. (Model parameters are as in
Fig. 1).

C(p, t;T, uν) =
1

τpp(t)
[feq(p, t;T (t), uν(t)) − f(p, t)]

+
1

τpa(t)
[feq(−p, t;T (t), uν(t)) − f(p, t)] ,

(17)

where τpp(t) = τpa(t) = τ(t) is the time-dependent relax-
ation time, and

feq (p, T, uν) =
[
exp

(
pνu

ν(t)
T (t)

)
+ 1

]−1

(18)

is the quasi-equilibrium distribution function, with pν the
quarks’ four-momentum. The other quantities in (17) are

uν(t) = (1, 0, 0, u(t))[1 − u(t)2]−(1/2), (19)

the hydrodynamical four-velocity and T (t), the local-
equilibrium temperature, both of which we define below.

Our RTA encodes all the complicated effects of parton–
parton collisions in a single time-dependent quantity, the
relaxation time τ(t). It is a measure of the time between
successive collisions and as such can be expressed as [23]

τ(t) = τc
λ(t)
ῡ(t)

, (20)

where λ(t) = 1/[n(t)]1/3 is the mean interparticle separa-
tion, since

n(t) = Np

∫
d3p

(2π)3
f(p, t) (21)

is the mean particle number density, and

ῡ(t) = |p|f (t)/εf (t) (22)
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is an average speed. (See (23) and (27).) The only param-
eter in our implementation of the relaxation time approx-
imation is then τc, the dimensionless constant of propor-
tionality.

Returning to (17), we define the local temperature by
requiring that at each time t the mean particle energy
density in the plasma is identical to that in an equilibrated
plasma at a temperature T (t); i.e.,

εf (t) = Np

∫
d3p

(2π)3
ω(p) [f(p, t) − zf (p, t)] (23)

= Np

∫
d3p

(2π)3
ω(p)feq(p, t). (24)

Similarly, u(t) in (19) is defined via the requirement

pf (t) = Np

∫
d3p

(2π)3
p [f(p, t) − zf (p, t)] (25)

= Np

∫
d3p

(2π)3
pfeq(p, t); (26)

i.e., that the mean particle three-momentum is the same as
that of an equilibrated plasma characterised by an hydro-
dynamical particle velocity u(t). The average magnitude
of the momentum is

|p|f (t) = Np

∫
d3p

(2π)3
|p| [f(p, t) − zf (p, t)] . (27)

The new element in these equations,

zf (p, t) =
(

eε⊥
4ω3(p)

)2

(28)

×
[
E2(t) − 2

τc
e−2t/τc

∫ t

t0

dt′E2(t′)e2t′/τc

]
,

is a regularising counterterm, determined via the same
procedure [14] that yields the renormalised currents in
Sect. 2.2, which ensures that the integrals involving the
calculated distribution function are finite. This countert-
erm itself exhibits “memory effects;” i.e., it is sensitive to
the time-history of the electric field.

We judge that using a time-dependent relaxation time
is an improvement over previous work that used τ(t) =
const.; e.g., [14,15], because it is manageable and better
models the conditions produced by an URHIC. Clearly,
just after the impact the parton number density is small
and hence the time between successive collisions is large.
Over time, however, the density of produced partons in-
creases, leading to a reduction in the interval between col-
lisions. These features are crudely reflected by the evolu-
tion of the relaxation time described in (20).

The final form of our collision term is thus obtained
from the combination of (17) and (20); i.e.,

C(p, t) =
ῡ(t)
λ(t)

(
feq(p, T (t), u(t)) − f(p, t)

τc

+
feq(−p, T (t), u(t)) − f(p, t)

τc

)
. (29)

-1 0 1 3 4 5

0,0

0,2

0,4

E
le

ct
ri

c 
fi

el
d

 [
G

eV
 2
]

Time [fm]

 τ
C
=1.0

 no coll.
 external field

Fig. 4. Time evolution of the total electric field. The effects
of feedback are evident in the oscillatory behaviour of E(t).
The viscous collision term damps these oscillations in a char-
acteristic time τc/m ∼ 1fm. The external impulse electric field
is also depicted. (Parameters: Set 2, Table 1).

It provides additional nonlocal feedback in the solution
for f(p, t). We emphasise again that our RTA is based
on the assumption of local-equilibrium, which is valid for
|t| � b, where b is the time duration of the URHIC. For
|t| � b, however, it is of questionable validity and may
lead to model-dependent artefacts, the misinterpretation
of which one must guard against.

4 Numerical results

4.1 Thermodynamic parameters

Our results are obtained via the simultaneous solution of
(9)–(11), (13)–(15), (24)–(28), using the collision term in
(29), which we accomplish using a fourth order Runge–
Kutta procedure. The solution, f(p, t), fully describes the
plasma’s evolution, from its creation to equilibration. In
addition we obtain the time-dependent vector potential,
electric field and currents, and also the quasi-equilibrium
temperature and collective velocity.

To explore the solution’s properties we have employed
a range of parameter sets, which are listed in Table 1, and
in Figs. 4–9 we demonstrate the effect of collisions by com-
paring the solution obtained using τc = 1.0 with that ob-
tained in the collisionless limit τc → ∞. (As is evident in
the figures, the plasma period satisfies mτpl ≈ 2.5 ∼ τc.
For τc � mτpl plasma oscillations are not observable [14];
i.e., the system is overdamped.)

In Fig. 4 we see that the URHIC generates a strong
electric field, which produces particles that sustain the
field for a time that depends on the collision frequency: a
large value of νc = 1/τc means a short-lived electric field
and rapid equilibration.

Figure 5 depicts the time evolution of the energy den-
sity, (23). It is negative on a small domain around t = 0
because of the large vacuum polarisation induced by the
strong external field. This instability is quickly corrected
by rapid particle creation; a correlation that is apparent in
a comparison of Fig. 5 with Fig. 6, which portrays the par-
ticle number density, (21). The density reaches a higher
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Fig. 9. Time evolution of the collective velocity, u(t). Its
behaviour clearly signals the collective plasma oscillation that
is characteristic of the flux-tube production mechanism. The
plasma oscillation is damped by collisions. (Parameters: Set 2,
Table 1).

value in the absence of collisions because the field–current
feedback allows unhindered, repeated bursts of particle-
pair creation. The Pauli principle does not significantly
retard the process because, while the particles are prefer-
entially produced with small momenta, the field rapidly
accelerates them. As Table 1 shows, the number density
increases with increasing A0; i.e., with increasing impulse
field strength.

In Fig. 7 we plot the behaviour of the entropy/particle,
where the entropy density is

s(t) = −Np

∫
d3p

(2π)3
{f(p, t) ln f(p, t)

− [1 − f(p, t)] ln[1 − f(p, t)]} . (30)

The calculated quasi-equilibrium temperature is de-
picted in Fig. 8. After rising quickly, it settles into a slow
evolution once the external field, (12), has subsided. This
marks the beginning of the domain on which the concept
of local equilibrium is valid.

The local velocity is plotted in Fig. 9. It shows, as one
would intuitively expect, that the produced particles are
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Fig. 10. Time evolution of the dilepton production rate. The
plasma oscillation is evident in this collisionless case, as is the
feature that the dileptons are preferentially produced at low
M2. (Parameters: Set 4, Table 1).

accelerated, reaching their maximum velocity when the
electric field vanishes (cf. Fig. 4), then decelerated as the
field reverses direction. They stop, and then reverse di-
rection and are accelerated by the reversed field to a new
maximum velocity. The repetition of this pattern is the
collective plasma oscillation, which is clearest in this fig-
ure. Of course, in equilibrating the system, collisions act
to destroy the pattern.

4.2 Dilepton production

The plasma oscillation is evident in the electric field and
in each of the thermodynamic variables, but none of these
quantities are directly measurable. Is there any way that
this characteristic signature of the flux-tube production
mechanism can be observed?

The thermal dilepton production rate may provide a
means. Dileptons produced in the URHIC do not interact
strongly and hence those produced soon after the impact
carry and transmit information about the pre-equilibrium
stage of the plasma. The dilepton production rate from our
(quasi-) equilibrium three quark system can be estimated
using [24,26]

dN
dtd3xdM2

=
α2

3π3 (1 − 4m2
l /M

2)1/2
(

1 + 2
m2 +m2

l

M2 + 4
m2m2

l

M4

)

×
∫ ∞

m

dε1dε2f(ε1)f(ε2)θ(M2 −M2
−)

×θ(M2
+ −M2), (31)

where α = 1/137; ml is the lepton mass, m the quark
mass and we use ml = m; M2 is the invariant mass of the
produced dilepton pair;

M2
± = 2m2 + 2ε1ε2 ± 2|p1||p2|, (32)
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Fig. 11. Time evolution of the dilepton production rate. Fre-
quent collisions rapidly damp the plasma oscillation, forcing
the production rate to settle at a constant value. (Parameters:
Set 4, Table 1).

and the time dependence of the distribution functions is
implicit.

We obtain the distribution functions, f(ε1,2) in (31),
as described in Sect. 4.1, using the RHIC-like parameter
Set 4 in Table 1. Knowing them, the calculation of the
dilepton production rate is straightforward. In Fig. 10 we
display that rate as a function of (M2, t). The plasma oscil-
lation is evident in the time evolution, with more dilepton
pairs being produced when the electric field is strongest
and the parton production rate peaks, and no pairs be-
ing produced when the electric field vanishes. The effect
of collisions is to drive the system to equilibrium where
the thermal dilepton production rate becomes constant,
as shown in Fig. 11.

Clearly, the plasma oscillations generate a signal. How-
ever, the time evolution of the dilepton production rate is
a difficult quantity to measure. An easier quantity is the
time-integrated rate:

ρl+l−(t) :=
dN

d3xdM2 =
∫ t

0
dt′

dN
dt′d3xdM2 . (33)

Does a signal survive in this observable?
In Fig. 12 we plot ρl+l−(t) obtained in the absence of

collisions, which must be compared with the function in
Fig. 13 that was obtained with the inclusion of collisions.
Our simple model yields rates that are comparable with
other estimates; e.g., [27], and the comparison of the fig-
ures shows that plasma oscillations generate an enhance-
ment in the number of dileptons, ρl+l−(t), which is as large
as a factor of 2 at t = 5 fm, given the Set 4 initial condi-
tions in Table 1. (Note that collisions eliminate the plasma
oscillation, so Fig. 13 can be thought of as the oscillation-
free scenario.)

A further illustration of the effect is provided in Fig. 14.
The equilibrium energy per particle, ε/n, grows with the
violence of the collision, i.e., with the value of A0, as do the
amplitude and frequency of the plasma oscillations. This
effect is responsible for the sharp increase in the dilepton
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Fig. 12. Time integrated dilepton production rate, (33), cal-
culated without collisions and hence in the presence of a per-
sistent plasma oscillation. (Parameters: Set 4, Table 1).
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Fig. 13. Time integrated dilepton production rate, (33), cal-
culated under the influence of frequent collisions that rapidly
equilibrate the plasma. (Parameters: Set 4, Table 1).

yield, evident in Fig. 14, for the most energetic collision in
Table 1. At lower values of ε/n the effect of plasma oscil-
lations is suppressed by collisions, but for the Set 4 initial
conditions the magnitude and frequency of the plasma os-
cillation are large enough to make their action evident in
spite of the damping, at least in our idealised treatment.
(A rapid expansion of the plasma will alter the initial con-
ditions required for plasma oscillations to have observable
consequences. It may even eliminate all possibility of an
observable signal.)

5 Epilogue

We have used a quantum kinetic equation coupled with
Maxwell’s equation to explore the formation and equili-
bration of a strong field plasma. Using a simple impulse
model for the URHIC, which produces RHIC-like con-
ditions, we find that the non-Markovian aspects of the
source term do not generate observable effects. However,
the field–current feedback, which is characteristic of the

0.6 0.8 1.0 1.2 1.4

ε/n (GeV)

0.0

2.0

4.0

6.0

8.0

ρ m
ax

(τ
=

5f
m

)x
10

7 (f
m

−
3 )

Fig. 14. ρl+l−(t = 5 fm) at the low invariant mass, M2, for
which it takes its maximum value, as a function of the equilib-
rium energy/particle attained in the collisions described by the
parameter sets in Table 1. The sharp increase in ρl+l− occurs
after the plasma oscillation overpowers the viscous collision
term.

production of strongly coupled charges by a strong field,
manifests itself in the appearance of plasma oscillations in
the thermodynamic observables. The oscillations are also
evident in the production rate of thermal dileptons and,
while the time evolution of this rate may not be measur-
able, the plasma oscillations act to significantly enhance
the time-integrated rate. The effect is marked by a sharp
increase in the dilepton yield when the energy per particle
becomes large enough to generate a high frequency and
large amplitude plasma oscillation, which initially over-
whelms the effect of collisions.

While the magnitudes of the quantities we calculate
are phenomenologically reasonable, the primary results of
our study are qualitative and many improvements are pos-
sible. Our relaxation time approximation to the collision
term is an intuitive and practical tool but a more realistic
connection with the actual collision process would provide
a systematic and well-constrained quantitative improve-
ment. A simpler step is the introduction of a strongly
momentum-dependent dressed-parton mass, which is an
essential feature of QCD [28]. That can have a significant
impact on the evolution of the plasma, promoting plasma
oscillations [29], and also on its subsequent hadronisation
[30]. Perhaps the most significant defect of our study is the
use of an Abelian model for the colour fields and progress
with a non-Abelian transport equation would be a marked
improvement [19].
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